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Tutorial

Partial Least Squares (PLS) Structural Equation Modeling
(SEM) for Building and Testing Behavioral Causal Theory:
When to Choose It and How to Use It

—Feature by
PAuL BENJAMIN LOWRY AND JAMES GASKIN

Abstract—Problem: Partial least squares (PLS), a form of structural equation modeling (SEM), can provide much
value for causal inquiry in communication-related and behavioral research fields. Despite the wide availability of
technical information on PLS, many behavioral and communication researchers often do not use PLS in situations
in which it could provide unique theoretical insights. Moreover, complex models comprising formative (causal) and
reflective (consequent) constructs are now common in behavioral research, but they are often misspecified in
statistical models, resulting in erroneous tests. Key concepts: First-generation (1G) techniques, such as correlations,
regressions, or difference of means tests (such as ANOVA or t-tests), offer limited modeling capabilities, particularly
in terms of causal modeling. In contrast, second-generation techniques (such as covariance-based SEM or PLS) offer
extensive, scalable, and flexible causal-modeling capabilities. Second-generation (2G) techniques do not invalidate
the need for 1G techniques however. The key point of 2G techniques is that they are superior for the complex causal
modeling that dominates recent communication and behavioral research. Key lessons: For exploratory work, or for

studies that include formative constructs, PLS should be selected. For confirmatory work, either covariance-based
SEM or PLS may be used. Despite claims that lower sampling requirements exist for PLS, inadequate sample
sizes result in the same problems for either technique. Implications: SEM’s strength is in modeling. In particular,
SEM allows for complex models that include latent (unobserved) variables, formative variables, chains of effects
(mediation), and multiple group comparisons of these more complex relationships.

Index Terms—Causal inquiry, partial least squares (PLS), structural equation modeling (SEM), theory building,

1G statistical techniques, 2G statistical techniques.

INTRODUCTION

The primary purpose of statistical techniques

is to estimate the probability that the pattern

of data collected could have occurred by chance
rather than by the causes proposed by the theory
being tested. These techniques should be carefully
selected based on the type of data collected and
should be carried out in the context of theory
using measures derived from a theory. Not all
portions of a theory are easily tested. There is much
about a theory that a researcher must understand
before employing statistical tests—for example, its
axiomatic foundations and the internal consistency
of its logic. Statistics have no value when testing a
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shoddily constructed theory that could be readily
broken by simple logic or counterexamples.

Regrettably, sometimes the application of statistical
analyses is not aligned with the theory being tested.
When this occurs, it holds back the progress of
scientific research and diminishes the relevance

of our work. Although such activities may have
the form of research, they lack its substance. The
implications of this difference are aptly described in
the following anecdote:

In the South Seas there is a cargo cult of
people. During the war they saw airplanes land
with lots of good materials, and they want the
same thing to happen now. So they've arranged
to make things like runways, to put fires along
the sides of the runways, to make a wooden
hut for a man to sit in, with two wooden
pieces on his head like headphones and bars
of bamboo sticking out like antennas—he’s
the controller—and they wait for the airplanes
to land. They’re doing everything right. The
form is perfect. It looks exactly the way it
looked before. But it doesn’t work. No airplanes
land. So I call these things cargo cult science,
because they follow all the apparent precepts
and forms of scientific investigation, but they’re
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missing something essential, because the
planes don’t land. Adapted from a 1974 Caltech
commencement address by Richard Feynman
[1, p. 155].

We, as researchers, exhibit “cargo cult” behavior
when we run statistical tests that we have seen
others use in the hopes of obtaining results similar
to those that others have obtained without fully
understanding if the tests we are applying actually
match the particular needs of our current study.
Having the form and appearance of research
through familiar statistical tests and reporting
without an understanding of the appropriate
application of these tests cannot produce results
upon which we can place any confidence.

We hope to steer researchers away from the
cargo cult of behavioral research by providing a
nontechnical, approachable explanation of the
tradeoffs between partial least squares (PLS),
covariance-based-structural equation modeling
(CB-SEM), and first-generation (1G) statistical
techniques in analyzing complex causal models.
Some papers already make useful strides toward
providing simple “beginner’s guides” to PLS [2]
and CB-SEM [3]. The current tutorial extends
these papers by offering additional analytical
procedures not offered in those beginner’s guides
and drawing upon more recent debates in the
literature regarding the relative merits and
limitations of each analytic approach. We also
attempt to write this tutorial in nonmathematical
lay terms to make it more approachable. It
behooves all researchers—whether they work
under the disciplines of causal epistemology or
whether they only review papers produced under
those disciplines—to gain fundamental knowledge
of second-generation (2G) statistical techniques
so that they know which technique should be
applied in which circumstance and understand the
techniques’ empirical and theoretical implications.

Statistical methods are sine qua non in testing the
utility of causal theories, but they can also aid
theory development. Partial least squares (PLS), a
form of SEM, has much to offer communication
and behavioral researchers in this regard. A
number of articles provide technical details
about SEM, comparing component-based PLS
SEM to CB-SEM (e.g., [4], [5]-[7]). The technical
nature of this literature, however, may distract
behavioral and communication researchers from
the relatively simple logic of PLS, dissuade them
from selecting the technique, or worse, cause them
to misappropriate the technique.

Importantly, we find little evidence that PLS is being
used to its potential in the broad field of technical
and management communication research. To
assess the use of PLS, we examined the top

10 technical and management communication
journals [8]. In this field, PLS was first used

in 1998 in the Journal of Computer-Mediated
Communication [9], but it was then virtually ignored
for a decade. Later, three JCMC papers used PLS
[10]-[12]. In IEEE TRANSACTIONS ON PROFESSIONAL
COMMUNICATION (TPC), PLS was first used in three
papers by Kock et al. [13]-[15] A total of seven other
TPC papers subsequently have used PLS [16]-[22].
More recently, PLS was used once in the Journal
of Business Communication [23]. We found no

use of PLS in Business Communication Quarterly,
Journal of Business and Technical Communication,
Journal of Technical Writing and Communication,
Management Communication Quarterly, Technical
Communication, Technical Communication
Quarterly, or in Written Communication. In
contrast, PLS has been used thousands of times

in other behavioral research fields’ articles,
including information systems, management,

and marketing. Clearly, the use of PLS is lacking
in our field, and this could likely be because

of the challenging empirical nature of PLS and
similar SEM techniques. The key limitation of not
using SEM is that it holds back communication
researchers from a more complete understanding
and testing of whole theoretical models that

drive communication phenomenon—from
communication quality, teamwork, virtual teams,
coordination, interactivity, and engagement to
deception. This is a particular pressing opportunity
in communication research, since most of the
established theoretical models—such as Social
Cognitive Theory, Theory of Planned Behavior,
technology acceptance model, Protection Motivation
theory, and General Deterrence Theory—are too
complex for full testing with traditional statistical
techniques. As a result, most communication
research studies test “parts” of theoretical models
without testing the “big picture” of the underlying
theory.

Given the paltry use of PLS in the broader field

of technical and management communication, we
seek to make PLS approachable to communication
researchers who are not necessarily experts in
statistics and SEM, but who are familiar with

the concepts and language commonly used

in 1G statistical techniques, such as linear
regression and ANOVA. By approaching PLS

from a nontechnical, measurement-theoretical
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perspective, we hope to clarify when it may or may
not be appropriate to adopt PLS, how it may be
conducted, how its findings can be interpreted,
and how they can inform theory development and
theory testing. To begin, we explain the advantages
of 2G statistical techniques (such as SEM), define
PLS as a specialized form of SEM, and contrast
the relative merits of PLS with the merits of 1G
techniques and CB-SEM. Then, we demonstrate
PLS using a large dataset and a complex statistical
model with formative and reflective indicators in
both moderating and mediating relationships. We
conclude with recommendations on the use of 1G
and 2G statistical techniques.

KEY CONCEPTS

In this section, we provide the foundation for our
tutorial by first explaining the key differences
between 1G and 2G statistical techniques. We then
discuss the nature and basics of causal modeling.
This section concludes with a discussion of the
advantages of SEM for testing causal models. These
particular concepts were selected to provide the
reader with sufficient background to understand
the differences between 1G and 2G techniques, to
better understand causal modeling, and to explain
why SEM holds specific advantages for causal
modeling.

Key Concept 1: 1G Statistical Analysis
Techniques 1G techniques are statistical
methods, such as correlations, regressions, or
difference of means tests (e.g., ANOVA or ¢-tests),
that are well suited to simple modeling scenarios.

Correlations are useful for exploratory research.
That is, they can be used for noncausal exploration
of how constructs may be related, on which future
path modeling or more causal research can be
based (e.g., [24]). Correlations are also fundamental
to more complex projects in helping to provide
measurement model statistics for regression or
SEM (e.g., [25]) and in helping to establish that
constructs in a model do not suffer from common
methods bias.

Means tests are particularly useful for
experimentation, where the focus of a study is

to demonstrate causality by controlling for time,
treatment, and control conditions, among other
considerations. In experimentation, one typically
needs to use means testing to demonstrate

that the treatment condition indeed behaved
differently than the control condition—a test often
known as a manipulation check. Such scenarios

often occur when communication researchers

are concerned with treatment differences in
communication-related constructs, such as group
size, information communication technology (ICT)
use, task structure, deception, coordination, and
communication media (e.g., face-to-face versus
online), as seen in [26]-[31]. Or, for example, even
if one is using regression or SEM for overall path
modeling, means tests may be used to establish
expected individual- or national-level cultural
differences between samples, as seen in [13] and
[32]-[36].

Regression analysis is particularly well suited

to simple models in which few IVs and DVs are
involved and the data are highly normalized (e.g.,
[27]). Regression can also be used to test highly
simple models for the existence of moderation (such
as interaction effects) and mediation. Regression

is also ideal for repeated measures (e.g., [32]). It

is also ideal for communication research involving
social network analysis that relies on logistic
regressions (e.g., [37]).

However, 1G techniques offer limited modeling
capabilities, particularly in terms of causal or
complex modeling. Specifically, 1G techniques
either cannot, or are ill suited to modeling latent
variables, indirect effects (mediation), multiple
group moderation of multiple effects, and assessing
the “goodness” of the proposed (tested) model

in comparison with the observed relationships
contained in the data.

Key Concept 2: 2G Statistical Analysis
Techniques 2G techniques (such as SEM) are
statistical methods for modeling causal networks of
effects simultaneously—rather than in a piecemeal
manner. SEM offers extensive, scalable, and flexible
causal-modeling capabilities beyond those offered
by 1G techniques. 2G techniques do not invalidate
the need for 1G techniques however.

One of the prime advantages of SEM is the
ability to include latent (unobserved) variables in
causal models. Thus, the researcher may model
abstract constructs comprised of many indicators
(observed variables), each of which is a reflection
or a dimension of the latent construct. Another
key advantage of SEM is that it enables the
researcher to estimate complete causal networks
simultaneously. For example, the effect of A — B
can be estimated while also estimating the effects
of A - C and B — C, as well as the indirect effect
of A on C through B. In addition, these effects
can all be estimated across multiple groups (e.g.,
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management versus nonmanagement employee),
while controlling for potential confounds (e.g.,
firm size and firm performance). Although SEM
has rarely been used in communication-related
research, it has many potential applications, and it
has been used before (e.g., [10], [11]-[23]).

The key point of 2G techniques is that they are
superior for the complex causal modeling that
dominates recent communication and behavioral
research.

[SEM is] viewed as a coupling of two
traditions—an econometric perspective
focusing on prediction and a psychometric
emphasis that models concepts as latent
(unobserved) variables that are indirectly
inferred by multiple observed measures [which
are also called indicators or manifest variables.
[38, p. vii]

Key Concept 3: Statistical Analysis Techniques
for Causal Modeling Causal modeling defines
variables and estimates the relationships among
them to explain how changes in one or more
variables result in changes to one or more other
variables within a given context. Professional
communication researchers might use causal
modeling to explain and predict the key factors that
increase communication quality, to examine the key
predictor of deception communication, to examine
the key customer and website communication
elements that predict customer loyalty, to examine
key factors predicting information overload, to
examine the factors that predict susceptibility to
spear phishing, and so on (e.g., [10], [13], [16], [23])-
Causal inference makes three primary assumptions
[39]: (1) covariation, (2) absence of spurious
relationships, and (3) temporal precedence.

Covariation means that the predictor and the
predicted variable vary together—that is, a

change in the predictor leads to an estimable and
systematic change in the predicted variable. Such
covariation is seen in all of the previous citations of
SEM use in communication fields.

Absence of spurious relationships means that
potential confounds are accounted for in a
model. In a communications context, this may
refer to including critical factors, such as trust,
communication history, and common ground, in a
model of communication quality.

Temporal precedence means that the predictor
occurs prior to the predicted variable such that
the relationship can truly be causal. For example,

does quality communication result from frequency
of interaction? Or, is communication quality a
cause of frequent interaction? One must logically
demonstrate through argument (or empirically) if it
is the chicken or the egg. 1G and 2G techniques
allow for discovering the covariation of variables
and the absence of spurious relationships, although
2G techniques allow for more sophisticated
assessment of potential confounds. Temporal
precedence cannot be established through either
statistical technique, but must be worked out
logically or through empirical evidence.

At its core, basic variable modeling can be
represented as the relationship between two
variables, as in the common linear equation:

y = mz + b, where y is the dependent (predicted or
outcome) variable, z is the independent (predictor
or indicator) variable, m represents the relationship
(slope) between = and y, and b is the intercept
along a 2D axis. 1G techniques, such as simple
linear regression, are extensions of this basic
equation. As such, these techniques suffer from
three main limitations in modeling [2]: (1) the tested
model structure must be simple,! (2) all variables
must be observable? (such as not latent), and

(3) estimation of error is neglected. Hence, while
multiple = variables can be included in the linear
equations, multiple y variables and additional
variables (¢, b, ¢, etc.) cannot be accounted for
within the equation. Thus, such multiple equations
must be run separately in order to assess more
complex models. 2G modeling techniques offer

a robust solution by running these equations
simultaneously and interdependently such that the
effects of all variables are estimated codependently
and simultaneously rather than separately.
Accordingly, 2G techniques are able to offer a
“truer” picture of the interdependent relationships
in a complex theoretical model.

Key Concept 4: Advantages of Structural
Equation Modeling Over 1G Techniques Given
this background, 2G statistical techniques provide
many additional features unavailable in 1G
techniques. 1G statistics test the plausibility

of a single theoretical proposition. A theoretical
proposition is a functional statement of cause and

IThis limitation can also be overcome if one utilizes complex
plugging that leverages bootstrapping [40].

2This limitation can be overcome to some extent by extracting
latent variable scores (LVS) during a factor analysis. These LVS
can then be used as “observed” or “composite” proxy variables
(instead of the full factor) during subsequent tests of causal
relationships (regressions). This approach has its limitations,
however, since LVS does not account for error as well as a fully
latent factor.
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effect (e.g., changes in X cause changes in Y; Y is
a function of X). Most theories, however, require
more than a single proposition to explain observed
variations in the phenomenon of fully interested.
1G techniques, therefore, can only test a complex
theoretical model (the empirical manifestation

of a testable theory) in fragments. 2G statistical
techniques, such as SEM, can test the plausibility
of an entire collection of propositions comprising a
causal theory simultaneously [41]. SEM can model
multiple independent variables (IV) and multiple
dependent variables (DV), chains of causal effects
and indirect effects, and the latent constructs that
variables are meant to measure. Latent constructs
are constructs that cannot be measured directly,
but that can be estimated through proxies. System
robustness, for example, would be considered a
latent construct because it cannot be measured
directly, but could be estimated with proxy
variables, such as average time between failures,
downtime, and data losses. In SEM, an observed
variable (sometimes called a manifest variable) that
is offered as one of a handful of proxies for an
unobservable latent construct is called an indicator.

1G statistical techniques must test the convergent3
and discriminant?* validity of latent variables
using separate statistical procedures than those
used to test causal relationships between those
variables. SEM simultaneously tests the validity of
measures and the plausibility of a theory [42]. 1G
statistical techniques cannot directly test mediated
relationships—chains of a relationship among
three or more constructs (e.g., changes in W cause
changes in X, which cause changes in Y, which
cause changes in 7). Instead, they must decompose
them into tests of relationships among pairs of
constructs. SEM, in contrast, can directly test
theoretically proposed chains of cause and effect,
which are called complex multistaged models.

1G statistical techniques cannot provide estimates
of measurement error when theoretical models
require that several measurement items be
multiplied together to compute the value of

a variable. Multiplying measurements causes
compounding of measurement errors. This
circumstance is called a fixed-scale construction
problem. SEM can provide estimates of
measurement error for each item in a multi-item

3Convergent validity is the degree to which operationalization
converges on other operationalizations with which it should be
theoretically similar.

4Discriminant validity is the degree to which an
operationalization diverges from other operationalizations from
which it should be theoretically dissimilar.

scale and for the scale as a whole, even when items
are multiplied together. Next, we explain each of
these feature advantages in more detail.

(1) SEM Jointly Assesses Measurement and Theory:
Causal research has a long tradition of
measuring constructs indirectly through multiple
measurement items [43], such as using a

system satisfaction questionnaire because actual
satisfaction cannot be directly measured or using
a technology-acceptance questionnaire because
actual attitudes cannot be directly measured.
When indirect measures (variables offered as
surrogates for a construct) are used to gather
data, measurement error is virtually guaranteed.
Therefore, it becomes important to establish
discriminant and convergent validity of one’s
measurement instruments before testing the
theoretical model [43]. 1G techniques cannot test
instrument validity and nomology (the theoretical
relationships tested by the theoretical model)
simultaneously; instead, researchers must conduct
separate assessments for each in a process known
as the “two-step approach” [41].

Separation of the theory and measure can cause
incorrect measurements, incorrect explanations,
and incorrect predictions. Theory and measurement
are conceptually integrated and are best dealt with
together. Theory tells us what to measure, and

the results can be accurately interpreted only in
the context of the theory from which they have
sprung [44].5 Chin [44] demonstrated empirically
that measures for one construct that were validated
separately from a theory in a two-step approach
did not necessarily remain valid when they were
combined with measures of other constructs

from the same theory. The validity of a simple
four-item scale changed when it was combined in
three different ways with other measures of other
constructs.® 1G techniques for reliability analysis

SHowever, there are cases where the two-step approach is
appropriate for empirical theory building. These cases include
situations when substantive apriori theory does not exist, such
as in a theoretical scale development, preliminary studies,
and early confirmatory studies [7]. In such scenarios, the
results can be considered only exploratory and should not be
treated as generalizable [7]. However, as shown in the next
section, the SEM technique of PLS can be superior for many
of these scenarios because it allows for exploratory theoretical
development with simultaneous analysis of measures.

6Chin believes one reason for this outcome is the:
“multidimensional nature of the measures. In a separate
components analysis, only the epistemic relationship between
the indicators and construct are examined. But when a causal
connection is made between constructs, the appropriateness of
a set of measures relates not only to how well they tap into a
construct, but also how well they predict (or are predicted by)
another construct” [44, pp. 39-40].
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force the researcher to either ignore or constrain
measurement error in subsequent analysis of

the theoretical model—causing the problem of
fixed-scale construction, among other problems
[45]. Fixed-scale construction is problematic
because it removes information from the theoretical
model. Having tested the interitem reliability of
individual items, using, for example, a Cronbach’s
alpha test, 1G statistical approaches typically
average or sum the items into a scale with a single
score, making further analysis of measurement
error impossible [45].

The more complex a theory becomes, the more
serious the problems with a two-step approach
become. SEM offers a solution to the two-step
approach by simultaneously testing the convergent
validity and discriminant validity of the scales
used to measure theoretical constructs (called
“the measurement model”) and the proposed
nomological links among theoretical constructs
(called “the structural model”) [43].7

(2) SEM Allows for Holistic Testing of Multistaged
Models: Since 1G techniques can test only one
theoretical proposition at a time, each theoretical
proposition must be tested separately from the
other propositions. Therefore, it is impossible to
test mediated relationships (chains of causation)
among constructs directly with 1G techniques. The
piecemeal testing of these relationships can lead
to inflated ¢-statistics (indication of significance),
which increases the likelihood of Type I error
(false positives). Piecemeal testing also diminishes
the ability of the researcher to account for the
overall variation in the model using the R? statistic

7The theoretical implications of this section should be
especially troubling to empirical behavioral researchers because
of the current state of our use of statistical techniques. As
an example, Boudreau et al. [46] found three disturbing
conditions: (1) studies not fully validating their instruments; (2)
reliability analyses typically involving only Cronbach’s alpha,
which is itself a severely limited measure; and (3) rare use of
advanced validation techniques for mature research streams.
The last-mentioned condition is of particular concern because
mature research streams often involve extensions of theory and
application to different theoretical contexts, all of which demand
revalidation of the instruments for appropriate theoretical
interpretation. Boudreau et al. also show that many researchers
are increasingly using existing instruments (which is desirable
for reasons of efficiency) without fully validating them in the
new theoretical context. Moreover, they often use them blindly,
not considering previous validation controversies. Another
problem is that by not creating new instruments to measure
existing constructs, researchers lose the opportunity to establish
nomological validity in mature research streams. Unsurprisingly,
Boudreau et al. found that “published studies making use of
second-generation statistical techniques (SEM) are much more
likely to validate their instruments than published studies
making use of first-generation statistical techniques” [46, p. 11].

(percent of variance explained in a dependent
variable), which leads to underestimation of the
magnitude of effects. This increases the likelihood
of Type II errors (false negatives). “It is possible

in regression, for example, to misinterpret the
underlying causality in that no single run can parse
out all the variance in complex research models”
41, p. 17].

SEM statistical models represent causal
relationships as paths. A path is a hypothesized
correlation between variables representing the
causal and consequent constructs of a theoretical
proposition. Each path, therefore, is a hypothesis
for testing a theoretical proposition. If a theory
proposes, for example, that perceived ease of use
causes an intention to use a system [47], then
SEM would represent that relationship as a path
between the variables that measure ease of use
and intention to use. Paths are often presented as
arrows in diagrams of SEM statistical models, with
the arrows pointing in the proposed direction of
causation.

An SEM statistical model can have a path for every
proposition in a theory. This inclusiveness allows
for complete testing of multistaged theoretical
relationships [41]. SEM

maps paths to many dependent (theoretical or
observed) variables in the same research model
and analyze[s] all the paths simultaneously
rather than one at a time. [41, p. 10]

SEM also allows researchers to test relationships
among unobservable, latent constructs [38]. These
features are particularly important for building
theories because theories rarely involve simple
one-way, single-stage relationships. Phenomena

of interest often “occur in a complex network of
causal links” [48, p. 33]. Hence, when endogenous
constructs that represent effects rather than
causes are added to a theoretical model, SEM
techniques come to different conclusions that are
almost always more accurate.® The interpretation
gap between 1G and 2G techniques may cause
“subtle or even gross differences between analytical
inferences about statistical conclusion validity” [41,
p- 20].

8We do not claim that SEM is better at establishing causation;
it is better at representing the complex network of causal links
necessary for establishing causation to be in accordance with
the theoretical model. Regardless of the statistical technique
used, causation requires association, temporal precedence, and
isolation [49]. Importantly, “statistical analysis alone cannot
prove causation, because it does not establish isolation or
temporal ordering” [41, p. 40].
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(3) SEM Avoids Fixed-Scale Construction: Another
theoretical problem in 1G techniques is that these
techniques do not account for error measurement
in the testing of nomological (causal) links from
IVs to DVs [45]. Researchers using 1G techniques
might assess measurement error through a
reliability analysis and then neglect or constrain
this error in a subsequent analysis, causing the
problem of fixed-scale construction, among other
problems [45]. Fixed-scale construction occurs
when researchers create indices of averages, sums,
or weighted averages across measurement items
when they have multiple measures of a construct.
Since there is no accounting for any measurement
error of the indicators in this approach, the
techniques themselves cannot reveal or account
for differences in measurement error among
measurement items. In such cases, the researcher
is assuming de facto that the measurement error
is trivial. This underlying assumption is unrealistic
for causal research in which the most important
variables are, of necessity, subject to measurement
error [45]. This problem extends to the use of
covariates (exogenous variables that co-vary), such
as in step-down analysis and ANCOVA/MANCOVA,
in which measurement error in covariates is not
accounted for [4].

1G techniques also restrictively assume
homogeneity of variance and covariances of all
dependent variables, whereas PLS does not require
this assumption [4]. SEM avoids the problem of
fixed-scale construction by allowing all indicators of
every theoretical construct to be fully represented
and analyzed in the model. SEM simultaneously
accounts for measurement error as a theoretical
model is tested. SEM assumes that unexplained
variance is due, in part, to measurement error;
therefore, employing SEM decreases the likelihood
of Type II errors (false negatives)® [4], [38]. SEM
also allows covariates to be treated as constructs
so that their measurement error can be accounted
for [4], which further reduces the likelihood of Type
IT errors.

9Recall that Type I errors (false positives) involve rejecting
the null hypothesis and accepting the alternative hypothesis
when the null hypothesis is actually true. Conversely, Type II
errors (false negatives) involve accepting the null hypothesis
and rejecting the alternative hypothesis (because of a lack of
statistical power) when the alternative hypothesis is actually
true.

(4) SEM Better Tests Moderators: Many causal
behavioral theories involve constructs that
moderate the relationships between other
constructs [50]. A moderator is a construct that
affects the strength of a causal relationship between
two other constructs. Since 1G techniques typically
do not model measurement error and suffer

from fixed-scale construction, they have greater
difficulty in detecting moderation effects (e.g., lack
the necessary statistical power), which manifest

as interactions in statistical tests!0 [45]. Lacking
empirical support, researchers may abandon
useful theoretical propositions; this potentially
undermines theoretical development. Depending
on the variance of the data and the effect size, 1G
methods can require sample sizes 4-10 times larger
than would be necessary to detect an interaction
using PLS for example [51].

To summarize, the problem with the two-step
approach used in 1G techniques is not the number
of steps required to establish factorial validity and
test a theoretical model; complex SEM models
may also require multiple steps for final validation
and testing, especially when formative indicators
are involved. The problem is that 1G techniques
typically change the nature of the measures

after they have been validated (e.g., fixed-scale
construction) and do not account for the theoretical
relationships among all measures in a model
during analysis. SEM techniques overcome these
issues because measures and theory are tested
together and all of the indicators in the measures
are fully accounted for, which avoids fixed-scale
construction.

KEY LESSONS

In this section, we compare and contrast PLS with
CB-SEM, discuss sampling issues, and provide a
step-by-step example of analyzing a causal model
using PLS. Specifically, the key lessons include: (1)
appropriately choosing to use PLS and CB-SEM,
(2) considering these sampling guidelines, and (3)
using this empirical demonstration of PLS and
video supplement to see PLS in use.

10Interaction effects involve moderator variables, which can be
qualitative or quantitative in nature and affect the direction or
strength of the relationship between an IV and DV [45]. These
are in contrast to mediators, which connect the relationship (or
mediate) between two variables and are more easily depicted
with SEM.
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Lesson 1: Appropriately Choose to Use PLS
and CB-SEM There are two forms of SEM. One

is covariance based and represents constructs
through factors (CB-SEM); the other is least
squares based or components based and represents
constructs through components (PLS). Although
most of the characteristics and advantages of
CB-SEM also apply to PLS, PLS can provide
advantages over 1G techniques and CB-SEM
techniques for preliminary theory building, while
CB-SEM has advantages over PLS in terms of model
validation. PLS incorporates several statistical
techniques that are not part of CB-SEM—such as
principal components analysis, multiple regression,
multivariate analysis of variance, redundancy
analysis, and canonical correlation [45]—without
inflating the ¢-statistic, as would happen if

each analysis were conducted separately from

the others. To ensure fixed-scale construction
never occurs, “the PLS algorithm allows each
indicator to vary in how much it contributes to
the composite score of the [construct]” [51, p. 25].
PLS is also especially useful for models that have
higher-order constructs (e.g., third- or fourth-order
constructs) [52].11 CB-SEM, however, allows for
the comparison between observed and proposed
covariance matrices, which enables assessment of
the overall “fit” of the proposed causal model. We
discuss these and other differences that can vastly
affect theoretical modeling next. In particular, we
present how these differences establish a case for
the preference of PLS when engaging in theory
development or exploratory causal modeling.

(1) Factor Indeterminacy: Perhaps most important,
PLS has a different goal than CB-SEM. CB-SEM
seeks to model the covariation of all the indicators
[6] to demonstrate that the assumed research model
(the null hypothesis) “is insignificant, meaning
that the complete set of paths, as specified in the
model that is being analyzed, is plausible, given
the sample data” [41, p. 24]. The primary objective
of PLS, in contrast, is to demonstrate that the
alternative hypothesis is significant, allowing the
researcher to reject a null hypothesis by showing
significant t-values and a high Rk? [5] (as argued
in [41, p. 24]).

11A latent construct that has a direct formative or reflective
relationship with its indicators is called a first-order construct.
A latent construct in formative or reflective relationships with
other latent variables is called a higher order construct. The
order of a given construct is determined by the number of paths
one would have to traverse to obtain from the construct to an
indicator.

The differences in the goals of CB-SEM and

PLS, as well as the differences in the underlying
calculations performed with these techniques,
create a greater contrast between PLS and CB-SEM
than many researchers may realize. Due to its
different theoretical goal, CB-SEM can cope with
imperfect measurements better than PLS can; this
ability is, in many cases, useful. CB-SEM analysis,
however, often ends with factor indeterminacy
[53], which means that it produces more than one
solution that is mathematically sound without
providing a means to determine which of the
several solutions corresponds to the hypothesis
being tested.!? As noted, “an infinite number

of unobservables may bear the same pattern of
correlations with observed variables and yet be
only weakly or even negatively correlated with each
other” [33, p. 449]. As a result, CB-SEM is very
unreliable in the exploratory analysis required

for theory building [53], [55]. However, CB-SEM

is ideal for testing the full nomology of a known
theory and testing general model fit. Using this
technique, the proposed causal model is compared
to the covariance matrix in order to determine if
the proposed model is a sufficiently “good” (such as
appropriate) way to model the relationships among
the variables. PLS does not have this capability
[38], [56].

Since CB-SEM can support a “large number of
alternative, but statistically equivalent, models
that can be supported by the same data” and
because of “over-fitting” [41, pp. 40-41], it becomes
difficult to argue causality using a CB-SEM
analysis. For these reasons, CB-SEM should be
used to test only well-established theories that are
empirically validated. It can be used safely only for
confirmatory analysis in which well-established
theoretical arguments can be used to overrule
competing explanations [53], [57]. Even robust
theoretical arguments, however, are not always
sufficient to resolve the indeterminacy problem
because multiple hypotheses can still equally well
account for the same data [53], [57]. Despite this
fact, research is replete with articles that discuss
new theories using LISREL and AMOS (two common
CB-SEM tools) and make causal claims that the
results cannot support.

123ee [54] for excellent coverage of the problem of factor
indeterminacy.
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Thus, researchers can help themselves avoid
unsupportable conclusions by using PLS “for
exploratory analysis and for testing developmental
theories” [53, p. 451]. PLS avoids factor
indeterminacy by composing constructs from

the factor scores and using these in subsequent
calculations, yielding explicit factors scores [S3].
Since PLS avoids factor indeterminacy, it can then
be used for confirmatory and exploratory studies.
Accordingly, PLS does not require the theory being
tested to already have empirical support that is well
established from other sources [41].13

(2) Data Distribution Flexibility: PLS also differs
from CB-SEM in the way it deals with the
unknowns in model estimation [50], [58]. The PLS
approach to prediction occurs iteratively; each step
minimizes the residual variance of the theoretical
and observed dependent variables to obtain
parameter estimates.14 Once PLS has obtained the
parameter estimates, it calculates the significance
of each path in the model using a #-test. Unlike 1G
techniques, PLS does not need to assume that the
DVs conform to any particular distributions. As

a result, it is robust to violations of multivariate
normal distributions [41], whereas CB-SEM (which
relies primarily on maximum likelihood estimation)
assumes data normality [59]. As a result, PLS
allows more flexibility in analyzing theoretical
models [41]. Specifically, PLS can calculate ¢-values
through a technique called bootstrapping if the
data are normally distributed and samples are
independent. If data distributions are not normal
or samples are not independent, PLS can calculate
t-values with a technique called jackknifing (a.k.a.

13Note, however, that we do not imply that the PLS method will
develop a theory for the researcher. A theory is a collection of
assumptions and propositions derived from those assumptions
that offer a logically consistent explanation for variation
observed in a phenomenon of interest. A statistical test can only
demonstrate the strength of correlations between variables and
indicates the probability that such correlations are a result of
random chance. A variable is a way to measure a theoretical
construct in a particular context. In exploratory research,
variables are not yet linked to constructs, and constructs are
not integrated into causal relationships derived from underlying
assumptions. Thus, PLS can reveal the unexpected existence
of correlations among variables, but the researcher still must
derive a rigorous theory to explain such discoveries.

14A parameter is a numerical value that represents some
literal aspect of a population of scores (in this case, the true
model from the actual population). Since it is rare that one
can actually measure an entire population of scores, we use
estimates of the parameters (a.k.a., parameter estimates), which
are the statistics that are computed from our samples.

blindfolding).15 If a path is found to be statistically
significant, then the null hypothesis for that path
can be rejected, and the statistical model can be
interpreted as providing empirical support for

the hypothesis represented by the path. Support
for the hypothesis, in turn, can be interpreted

by the researcher as support for the theoretical
proposition that the hypothesis was meant to test.

(3) Construct Specification: One modeling and
theoretical limitation of CB-SEM (as with 1G
factoring techniques) is that it assumes that one

is using reflective indicators rather than formative
indicators in a model. A reflective indicator is an
observed variable that is assumed to be an effect
of a latent construct. The underlying construct is
assumed to cause the values that manifest in the
observed variable. If a system is robust, for example,
it may be assumed that the effect of that robustness
will be low mean time between failures and short
downtimes. A key implication of this assumption
would be that changes in the latent construct would
manifest as changes in all of its indicators [60]. The
latent construct is said to determine its reflective
indicators [61]. Since all reflective indicators of

a latent construct are assumed to be caused by
the construct, reflective indicators would have to
co-vary. Therefore, measures of convergent validity
would be important to ensure that variations in one
indicator are consistent with variations in the other
reflective indicators of the same latent construct.

In contrast, a formative indicator is a variable
measuring an assumed cause of or a component
of a latent construct. Under this conception, a

15Bootstrapping and blindfolding are nonparametric
techniques that are built into PLS to improve model estimation
with PLS (one chooses to do one or the other when performing
a PLS analysis). Bootstrapping is a way of computing sampling
error and generating ¢t-values by using the available data as a
distribution. Bootstrapping assumes independent residuals
(residuals are the discrepancy between the actual values
and the estimated values); they can be swapped without
undermining the estimates [50]. In contrast, blindfolding makes
no assumptions of independence.
Blindfolding is a resampling procedure that generates
“jackknifed” estimated means and standard deviations (by
omitting part of the examined construct’s data matrix and
repeatedly estimating the model parameters based on the
blindfold omission distance) as another way to determine path
significance [50]. This process of leaving out and reconstructing
data repeats itself until every data point is left out and
reconstructed once [50]. This technique provides two results
[50]: the generalized cross-validation criterion that can be
used to evaluate the model and the results of the jackknife
technique. The jackknife technique results are the distribution
of the parameter estimates (individual parameter estimates’
standard errors) and do not require distribution assumptions
[50]. Accordingly, blindfolding is particularly useful in dealing
with unknowns, requires no distributional assumptions or
independence, and, so, fits perfectly with PLS [50]. More
specifics on these two techniques can be found in [42].
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latent construct is assumed to be defined by or a
function of its indicators. A key implication of such
an assumption would be that changes in the latent
construct would not necessarily be matched by
changes in all of its indicators. Changes in a single
indicator, however, would be enough to predict a
change in the latent construct. It would be possible
for formative indicators to vary independently of, or
even inversely with, one another [62]. Therefore,
measures of convergent validity would not be
meaningful for formative constructs. The quality
of an information system, for example, might be
defined by the speed, accuracy, and completeness
of the information it provides to decision makers. It
would be possible, however, to improve the speed
of a system by reducing the completeness and
accuracy of the information it provides. Thus, it
would not be appropriate to frame speed, accuracy,
and completeness as reflective indicators of system
quality. However, it could be useful to frame them
as formative indicators, since speed, quality, and
completeness comprise system quality.

The CB-SEM and 1G assumption that all indicators
are reflective can result in serious modeling errors
[38] that produce inappropriate results. This is
particularly salient to behavioral research where
mixed models—those comprising reflective and
formative indicators—are common. Thus, when a
theoretical model includes formative indicators (or
a mix of reflective and formative), it is important
to use an appropriate statistical technique, such
as PLS, that can account for both indicators in its
statistical model.

(4) Moderation and Model Complexity: CB-SEM
improves on many of the 1G problems of detecting
interaction effects. However, CB-SEM techniques,
such as LISREL and AMOS, are not as sensitive

to moderator effects as PLS is [45], since PLS

is generally better at dealing with measurement
error. This, in turn, decreases the sample size
requirement [45]. Chin et al. [45] show through a
Monte Carlo simulation that PLS can be combined
with a product-indicator approach to measure
interactions and moderation effects more effectively
than can be accomplished with CB-SEM. PLS
software, such as SmartPLS [63], also includes
specific design features to ease the analysis

of interactions. However, analyzing categorical
(grouped) moderators, such as gender, is far simpler
in CB-SEM tools, such as AMOS. For example,
AMOS has built-in design features that assist with
multiple group analyses, whereas SmartPLS does
not.

The other typical problem when using interaction
variables as moderators with CB-SEM is that
interactions dramatically increase the number of
indicators and underlying complexity of a model,
which CB-SEM is not well equipped to handle.
When CB-SEM encounters complex models, it
requires very large samples for estimation accuracy
and is limited in working with only a relatively

few variables in order to achieve convergence [53],
[58]. This requirement leads to further problems,
as when the number of measures, factors, and
levels within factors increase in CB-SEM, the
model requires a much larger number of free
parameters!6 for estimations. This increases the
chance of nonconvergence (model failure) and
improper solutions [4]. As a result, CB-SEM should
be used to analyze models with a maximum of
40-50 indicators, even with large sample sizes,

in order to prevent model nonconvergence [45].
Again, this is a common problem in the behavioral
research literature where several articles have used
LISREL and AMOS to analyze much larger models.

When to Choose PLS or CB-SEM: To summarize
this section, in choosing whether to use PLS or
CB-SEM, one should initially consider whether the
research is exploratory (building or testing a new
theory) or confirmatory (testing a well-established
theory). For exploratory work, PLS should be
selected. For confirmatory work, either technique
may be used. In Table I, we recommend when to
select PLS or CB-SEM given particular modeling
considerations—when the work is confirmatory.

Lesson 2: Consider These Sampling Guidelines
Scholarly studies often claim that sample size
requirements vary across analytic approaches. For
example, scholars frequently justify their use of PLS
(as a “limited information” estimation procedure)
due to its assumed ability to handle lower sample
sizes [64]. However, increasing evidence exists that
in many instances, PLS requires a comparable
sample size to that used in other techniques [64].
One commonly used heuristic for determining the
minimum required sample size in PLS is to multiply
10 times the “scale with the largest number of
formative (such as causal) indicators” or to multiply
10 times “the largest number of structural paths
directed at a particular construct in the structural
model” [51, p. 39]. However, this heuristic has
recently been criticized as too lenient and used

too often in PLS research [52]. Thus, to be more
accurate, “one needs to specify the effect size for

16An observation that is needed to define a model enough so
that predictions can be made, but which must be determined
by experiment or observation.
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TABLE I

RECOMMENDATIONS ON WHEN TO USE PLS VERSUS CB-SEM

Model Requirement

PLS

CB-SEM

Includes interaction effects

Preferable, as it is designed
for easy interactions

Difficult with small models,
nearly impossible with large

ones
Includes formative factors Easier Difficult
Includes multigroup Can use, but difficult Preferable

moderators

Testing alternative models Can use Preferable, as it provides
model fit statistics for
comparison

Includes more than 40-50 Preferable Sometimes unreliable if it does

variables

converge; sometimes will not
converge

Nonnormal distributions

Preferable (although it will still
affect results, just to a lesser
extent)

Should not be used; results in
unreliable findings.

Nonhomogeneity of variance

Preferable (although it will still
affect results, just to a lesser
extent)

Should not be used; results in
unreliable findings.

Small sample size

It will run (although it will still
affect results negatively)

Unreliable if it does converge;
often will not converge

each regression analysis and look up the power
tables” [65, p. 327]. Furthermore, nonnormality
of PLS does cause issues with power analysis
and needs to be further considered [52]. Thus,
before gathering data, it is important to determine
the sample size necessary to achieve reasonable
power. Accordingly, PLS users still need to follow
basic statistical guidelines on power. Failure to
do so, can lead to using inappropriate sample
sizes [64]. Sample size still affects the stability

of the estimates [38], particularly when dealing
with complex interaction terms. For example,
Goodhue et al. [66] compared the necessary sample
sizes for 1G techniques, PLS, and CB-SEM. They
found that sampling requirements actually did not
significantly differ between these techniques with
respect to achieving sufficient power. Thus, while
PLS and 1G techniques may run when using lower
samples (Whereas CB-SEM often cannot run with
low samples), the estimates may still be unstable
and cannot be relied upon due to low power [66].

Lesson 3: Use this Empirical Demonstration

of PLS and Video Supplement to See PLS in
Use To further illustrate the potential strength of
applying PLS to theory building in a communication
context, we provide an example of PLS analysis
using data collected from 346 participants in

a large group-communication quasiexperiment
using an audience response system (ARS) that
took place over a year. Full details of the theory,
model, procedures, and the experiment appear

in [67]. For purposes of tutorial demonstration,

we take the theory and the data as received. The
measures are repeated in [67, App. 3]. Here, we
only briefly overview the method procedures. A
total of 346 undergraduate business majors at a
large, public, university in Southern California
participated, providing more than adequate apriori
power. All participants were enrolled in one of two
sections of the same introductory-level information
systems course. A total of 60.7% of participants
were male and 39.3% were female. Average age was
22 (5D 2.8). Average GPA was 3.01 (SD 0.44). Ethic
distribution was Asian (49.7%), Caucasian (16.5%),
Hispanic (15.0%), African (1.7%), and other/no
response (17.1%).

This study employed a quasiexperimental
nonequivalent groups design with multiple outcome
measures, which is appropriate when random
assignment is not possible. Two large sections met
for two instructional quarters of the same course:
large-group interaction without ARS (control group)
and large-group interaction with ARS (treatment
group). The ARS tool Classroom Performance
System (CPS) by Elnstruction, Inc. was used for
this research. CPS provided all group members
with a small, handheld, eight-button response

pad that transmitted an infrared signal to a
receiver connected to the facilitator’s computer. The
system’s software recorded participant responses
and graphically displayed results in real time. The
study established the efficacy of ARS in increasing
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Discussion
efficiency

Fig. 1. Theoretical model used for demonstration.

interactivity and communication quality in large
groups, compared to control groups who followed
the same activities and procedures without use of
ARS.

The data for the model that we will be testing
were collected to test a theoretical model of
process satisfaction. The model proposes that
communication quality is a mediator between
interactivity and process satisfaction and that status
is an inverse moderator of the relationship between
communication quality and process satisfaction.
Since we present the model here only as a device for
demonstrating the utility of PLS, we do not define
the constructs or explain the theory in this tutorial;
neither do we discuss the measures, nor do we
defend the experimental procedures under which
data were collected. For purposes of demonstration,
we take the theory and the data as received. Details
of the theory and the experiment appear in [67].

The model depicted in Fig. 1 includes formative
and reflective indicators. Positive relationships
are depicted with a solid line, while inverse
relationships are depicted with a dotted line.

In this model, interactivity is a second-order
formative factor composed of the reflective
constructs of control, synchronicity, and two-way
communication. Communication quality is a
second-order formative factor composed of the
reflective constructs of communication openness
and task discussion effectiveness and the formative
construct of discussion efficiency. Process
satisfaction is a first-order formative construct.

Communication
quality A

;RN

discussion

Comm Task
openness x{fectiveness

satisfaction

-

Status is a first-order reflective construct that is
proposed to negatively moderate the relationships
between communication quality and process
satisfaction. In addition, four covariates are
proposed to affect process satisfaction. Finally,
communication quality is proposed to be a full
mediator in the relationship between interactivity
and process satisfaction.

The interactivity model of process satisfaction has
a number of characteristics that would make it

a good candidate for PLS analysis. First, it is a
mixed model of formative and reflective indicators,
which 1G techniques and CB-SEM cannot test.
Second, the model contains 41 indicators, which
would be virtually impossible to test with 1G
techniques because there are too many indicators
and pathways, and this is pushing the limits of
appropriateness for CB-SEM [41]. Finally, once the
interaction items were included in the model (to test
the proposed moderating relationship), our model
grew to 159 indicators (not depicted in Fig. 1). This
is much larger than the 40-50 indicator limitation
established to prevent model nonconvergence in
CBSEM [45]. Having established the model to be
tested, we will now explain the testing process.
For this analysis, we used SmartPLS version 2.0
[63], which is available freely to academics at
http:/ /www.smartpls.de. See [68] for a guide to
setting up SmartPLS, including prepping, loading,
and troubleshooting data.

Supplementary Videos for Our Tutorial: Since
the use of a manuscript for communicating
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the mechanics of analytical procedures is quite
limiting, we also include links for step-by-step
video tutorials. We propose that this composite
approach to a tutorial manuscript should increase
the accessibility of the material in order to make
following and replicating the procedures much
easier. The value of supplementing traditional
paper tutorials with online video tutorials is
manifest in the heavily trafficked site we will be
referencing (Gaskination’s YouTube channel),!”

as set up by one of the coauthors of this tutorial.
This channel is devoted almost exclusively to SEM
video tutorials and demonstrations of procedures
using CB-SEM and PLS approaches. The site is
heavily used as a resource for researchers across
the world conducting quantitative studies. The

75 videos have been viewed (currently) in 195
countries, around half a million times, for a total
viewing time of nearly one million minutes. The site
also acts as an active forum around the videos,
currently with more than 2000 posts. The YouTube
channel currently has eight videos dedicated to PLS
analyses in SmartPLS, the software we will be using
is in the empirical demonstration as will be shown.
These nine videos have been viewed around 20,000
times since their posting less than 10 months ago.

Step 1: Model Specification: Before we run a PLS
analysis, we need to configure the model in a way
that will produce the kinds of results we need.

To do this, we must carefully establish which
indicators are formative and which are reflective
[69], [70]. This is important because the tests

to establish the factorial validity for reflective
indicators are quite different than the approach
used to validate formative indicators (see [62]!8 for
specifics). Incorrectly specifying the indicators can
increase both Type I and Type II errors [62], [70]. In
SmartPLS, to set a factor as formative, simply right
click the factor and select “invert measurement
model.”

In our demonstration, we modeled the five
indicators of communication openness as reflective
because the various items are interchangeable (e.g.,
“It was easy to communicate openly to all members
of this group,” “Communication in this group was
very open,” and “When people communicated to
each other in this group, there was a great deal of

17This channel is available at http:/ /www.youtube.com/user/
Gaskination.

18In our tutorial, we intentionally have used the neutral term
construct to refer to those that may have reflective or formative
indicators because, as indicated in [62], researchers typically
use the term latent variables to refer to constructs that have
reflective indicators and the term formative constructs to refer to
constructs that have formative indicators.

understanding.”). Any change in communication
openness should be matched by similar changes in
all of its indicators. Conversely, we characterized
the indicators of task discussion effectiveness as
formative because the construct is a composite

of these indicators, rather than a cause of them
(e.g., “The context of the discussions was carelessly
developed,” “Participation in the discussions was
unevenly distributed,” “Ideas in the discussions
were uncritically examined,” and “The amount of
information exchanged was sufficient”). Removing
or replacing any of the items would change the
meaning of the construct; they could reasonably be
expected to vary inversely under some conditions.
Since these indicators are not interchangeable, they
must be framed as formative rather than reflective.

The degree to which the first-order constructs
contribute to the second-order constructs is
established by creating them as a molar model, as
outlined and discussed in [71]. To do this in PLS, we
created a second-order construct that contained all
indicators of its first-order subconstructs and then
ran a model with the subconstructs predicting the
second-order construct. This “repeated indicator”
approach works well when the second-order
construct is either reflective or exogenous (such as
predictor only). However, when the second-order
construct is endogenous and formative, the
repeated indicators in the second-order construct
are perfectly predicted by the first-order constructs,
which also contain those indicators. Therefore,

all other potential effects from other predictors

are effectively swamped out, and the R? for the
second-order construct is 100%. To overcome this
issue, we must take a two-step approach by first
modeling the measurement model and obtaining
the latent variable scores for the second-order
construct (and all other top-level constructs). Then,
we must create a new model that uses the latent
variable scores as indicators of the constructs. A
demonstration of this two-step approach is offered
on Gaskination’s YouTube Channel [72].1°

Step 2: Establish Construct Validity of Reflective
Constructs: An example of a factor analysis in
SmartPLS is also offered on Gaskination’s YouTube
channel [73]. Establishing validity and testing the
entire path model occurs in one pass using PLS
by running a bootstrap of the model using 200

(or more) resamples.20 In doing so, we performed

a confirmatory factor analysis (CFA) that was

19SmartPLS Formative 2nd order Constructs”:
http: / /www. m /watch?v=kPeUTKjMF7o.

20To do this in SmartPLS, simply select “bootstrapping”
instead of “PLS algorithm” in the calculate menu.
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executed as part of the PLS run. Following the
procedures outlined in [43] and [74], we first
established convergent validity for the reflective
constructs by checking whether the measurement
items were loaded with significant ¢-values on their
theoretical constructs. All of our reflective indicators
were significant at the o 0.05 level on this test.
We then examined the ¢-values of the outer model
loadings (an estimation of how much a particular
indicator loads onto a construct in the model).2!
All of the outer loadings were significant at the
0.05 « level (see Table Al.1 in the online appendix,
available online as downloadable supplementary
material at http://ieeexplore.ieee.org). These
results indicate strong convergent validity in our
model for the constructs. SmartPLS also offers a
measurement model table (akin to a pattern matrix)
with the inner model loadings.?2

To determine the discriminant validity of our
indicators, we used two established techniques.
First, we correlated the latent variable scores
against the indicators. In SmartPLS, the latent
variable scores can be found in the “Index Values
for Latent Variables” portion of the “Index Values
Results” section of the default report after running
the PLS algorithm. In a separate spreadsheet that
contains the individual items, we ran Pearson’s
correlations of all the items against the latent
variable scores. These correlations represent

a confirmatory factor analysis in which the
correlations are the actual loadings of the indicators
on all of the constructs in the model. Although
exact guidelines governing the validity of such
results have not yet been established, we proceed
based on the general rule that “all the loadings

of the measurement items on their assigned
constructs should be an order of magnitude
larger than any other loading ... For example, if
one of the measurement items loads with a 0.70
coefficient on its latent construct, then the loadings
of all measurement items on any latent construct
but their own should be below 0.60” [43, p. 93].
Anything outside these guidelines would constitute

21ln SmartPLS, this becomes the default report when you
run “bootstrapping” instead of the PLS algorithm. The data
necessary to demonstrate convergent validity are found in
the “outer loadings (mean, STDEV, tvalues)” section of the
report. Specifically, one examines the #-values of each item,
and the p-value of each ¢-value needs to be significant at the
0.05 alpha protection level (needing a #-value of about 1.96 or
greater—absolute value) or the specific item demonstrates a lack
of convergent validity on that factor.

22In SmartPLS, the pattern matrix can be found in the “cross
loadings” portion of the “quality criteria” section in the default
report after running the PLS algorithm.

a violation in discriminant validity and would

be dropped. Using latent variable scores, strong
discriminant validity was established for all items
except for the fifth item of synchronicity, which
we therefore dropped (see Table Al.2, available
online as downloadable supplementary material at
http:/ /ieeexplore.ieee.org).

To confirm the discriminant validity of
our indicators further, we calculated
the average variance extracted (AVE):

Conceptually, the AVE test is equivalent to
saying that the correlation of the construct
with its measurement items should be larger
than its correlation with the other constructs
[43, p. 94]

which is similar to correlation tests with multitrait,
multimethod (MTMM) matrices. To perform this
test, we ran a correlation of each variable with
each other variable and then compared these
correlations to the square root of the AVE for each
construct. The AVE is calculated in SmartPLS by
computing the variances shared by the items of a
particular construct??® (See Table A1.3, which is
available online as downloadable supplementary
material at http:/ /ieeexplore.ieee.org.) In the table,
the AVE square roots are represented as the

bold and underlined diagonal elements. The
offdiagonal elements in Table A1.3, which is
shown as downloadable supplementary material
at http://ieeexplore.ieee.org, represent the
correlations between the constructs. To establish
discriminant validity further, the diagonal elements
must be greater than the offdiagonal elements for
the same row and column, not the AVE value itself.
The AVE analysis showed very strong discriminant
validity for all subconstructs, further confirming
our choices of items to retain and drop.

Step 3: Establish the Reliability of the Reflective
Constructs: Reliability refers to the degree to which
a scale yields consistent and stable measures over
time [75] and applies only to reflective indicators.
PLS computes a composite reliability score (similar
to Cronbach’s alpha in that they are both measures
of internal consistency) as part of its integrated

23These are automatically generated by SmartPLS and can be
found in the “overview” portion of the “quality criteria” section in
the default report after running the PLS algorithm. This is also
where you will find the composite reliability and Cronbach’s
alpha scores.
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model analysis. (See Table Al.4, available online
as downloadable supplementary material at
http:/ /ieeexplore.ieee.org).2* Each reflective
construct in our research model demonstrated a
level of reliability well above the recommended
threshold of 0.70 [42].

Step 4: Establish Construct Validity of Formative
Indicators: Researchers have traditionally used
theoretical reasoning to argue the validity of
formative constructs [69]. The procedures for
determining the validity of reflective measures
do not apply to formative indicators [62], [74],
since formative indicators may move in different
directions and can theoretically co-vary with
other constructs. The concepts of construct
validity and reliability, therefore, do not apply
to formative constructs. Although statistical
approaches are emerging to test the construct
validity of formative indicators [62], [76], no single
technique is universally accepted for validating
formative measures. However, the modified
MTMM approach, as presented in [76] and [77],
is regarded by many as a promising solution.
Therefore, we inspected the MTMM table produced
by our PLS run2> (Table Al.5, available online
as downloadable supplementary material at
http:/ /ieeexplore.ieee.org) and concluded that
convergent validity was highly likely. However, a
simpler approach is just to ensure the indicator

24These are automatically generated by SmartPLS and can be
found in the “overview” portion of the “quality criteria” section in
the default report after running the PLS algorithm.

25For reflective measures, loadings were used because they
“represent the influence of individual scale items on reflective
constructs; PLS weights represent a comparable influence
for formative constructs” [77, p. 49]. For formative items, we
created new values that were the product of the original item
values by their respective PLS weights (representing each item’s
weighted score, found in the “outer weights” section of the PLS
calculation results section of the default report after running the
PLS algorithm). Then, we created a composite score for each
construct by summing all of the weighted scores for a construct.
Finally, we produced correlations of these values, providing
intermeasure and item-to-construct correlations.
To test convergent validity, we checked whether all of the items
within a construct highly correlate with each other and whether
the items within a construct correlate with their construct value.
This was true in all cases, leading to the inference of convergent
validity. While we would ideally want interitem correlations to be
higher within a given construct, this cannot be strictly enforced
since there are exceptions depending on the theoretical nature
of the formative measure [69], [77]. In addition, large matrices
would introduce exceptions that are not necessarily meaningful
and, thus, careful theoretical judgment needs to be used before
removing any items [62]. Thus, we believe the most meaningful
discriminant validity check with formative measures is to
examine the degree to which items within a construct correlate
to a given construct.

weights for formative constructs are roughly equal
and all have significant ¢-values [78].26

Because multicollinearity poses a greater problem
for formative indicators than for reflective
indicators, we also used the approach suggested by
Petter et al. [62] to assess formative validity, which
involves testing the multicollinearity?” among the
indicators using regression. An example of how

to detect multicollinearity in SPSS is shown here
[79]. At a maximum, the variance inflation factor
(VIF) for formative factors should be 10, but for a
more rigorous test, they should be below 3.3 [62].
In our case, all of the VIFs of the indicators were
below 3.3, indicating sufficient construct validity
for our formative indicators. Had any indicators
scored higher than 10, we would have had to drop
them from the model. As with CB-SEM techniques,
if items were dropped at any point during the
factor analysis, we would have to restart the factor
analysis because of the highly interrelated nature of
variables in SEM analyses. Removing a single item
can alter the inner and outer model loadings and
weights. Thus, the final reported validity statistics
should be those gathered once all changes to the
structure of the measurement model are complete.

Step 5. Test for Common Methods Bias: Since

the endogenous variables were collected at the
same time and using the same instrument as

the exogenous variables, we tested for common
methods bias to establish that such bias did not
distort the data we collected. However, we also
acknowledge that there is increasing debate as to
how serious this bias is [80]. This is an important
consideration in most behavioral research; thus,
it should be accounted for after construct validity
is established. To do so, we used two approaches.
First, we examined the exploratory, unrotated
factor analysis to find the results of Harman’s
single-factor test for all of the first-order constructs
using a standard statistical package. The aim of the
test is to determine if a single factor emerges that
explains the majority of the variance in the model.
If so, then common method bias likely exists on a
significant level. The result of our factor analysis
produced 27 distinct factors, the largest of which
accounted for only 29.89% of the variance of the

26In SmartPLS, the indicator weights and their t-values can be
found in the “outer weights (means, STDEV, t-values)” portion
of the bootstrapping section of the default report after running
the bootstrapping algorithm.

27This is a statistical phenomenon when two or more
predictors are highly correlated. Multicollinearity generally does
not reduce the predictive power of the model itself, but it often
reduces the validity of specific predictor results.
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model. This suggested that our data did not suffer
from common methods bias.

Due to the growing dispute about the merits of
Harman'’s single-factor test [81], we corroborated
the results from Harman’s single-factor test by
examining a correlation matrix of the constructs
(using Pearson’s correlations) to determine if any
of the correlations were above 0.90 among the
formative indicators. Had there been correlations
that high, it would have given strong evidence that
a common methods bias existed [82]. In no case
did our correlations reach this threshold; thus, the
likelihood of common methods bias is low.

Moving beyond the scope of this tutorial, more
advanced approaches can be applied to test
common methods bias further, should simpler
techniques not provide clear results. A leading
approach with PLS is to include a marker variable
in the data collection that is unrelated to the model
[83]. In this use, a researcher would correlate the
data to the marker variable, and if the correlations
are high, then common methods bias likely exists.
Other approaches are extensively reviewed in [81]
and [84].

Step 6. Test for Moderation Effects (If Applicable):
Our theory proposed that the relationship between
communication quality and process satisfaction
was inversely (such as negatively) moderated by
status—in other words, the lower a respondent’s
status, the more the respondent’s process
satisfaction would be affected by communication
quality. Moderator relationships in a theory are
tested statistically by checking for interaction
effects among independent variables.

Whether moderators exist in a model is assessed
by a hierarchical process similar to that used in
1G statistical techniques. First, two models—one
with the moderator relationship and one without
[45]—were constructed and compared. This process
required two PLS runs—one for the baseline model
and one for the interaction model. In creating the
baseline model, the main effects of the interaction
term need to be included, including status. We
tested our model for its interaction term using
the product-indicator (PI) approach proposed by

Chin et al. [45] because this method is the most
effective approach in identifying interaction terms
in complex path models.2829

Adding the PI interaction terms dramatically
increased the number of indicators in the overall
model to 159, rendering the model analyzable

by PLS only. The interaction of status and
communication quality was significant at an «
protection level of 0.05 (f = 2.85). Adding in the
interaction term decreased the beta coefficient

of the path between communication quality and
process satisfaction from the baseline model (from
0.798 to 0.699); the RR? for process satisfaction also
increased from 0.651 to 0.668. Consequently, in
the interaction model, the negative path coefficient
between status effect and PS was now significant
(t = 2.80). Our significant interaction had an effect
size of f2 = 0.05, showing a small interaction
effect39; however, even small effects using the
product-indicator approach indicate important
model relationships [45].

The interaction model is shown in Fig. 2. Variance
is explained and indicated for each construct as

28This approach adds three critical improvements to
measuring interaction effects. First, this approach models paths
between each exogenous and endogenous construct—a critical
step because “when the main effect variables are missing in the
analysis, interaction path coefficients are not true interaction
effects” [45, p. 196]. Second, it standardizes or centers the
individual items for the moderation scores. “Standardizing
or centering indicators helps avoid computational errors by
lowering the correlations between the product indicators and
their individual components” (pp. 198-199). Standardizing is
used if it is thought that the indicators measure their constructs
equally well. Since we had no theoretical reason to believe
that there were unequal differences in the specific indicators,
standardizing was our methodological choice. Third, no
information is eliminated from the model. All of the interaction
indicators stand alone without being summarized and are free
to vary on their own to take advantage of PLS analysis.

29To add this interaction variable in SmartPLS, just right-click
on the endogenous variable (in our case, process satisfaction)
and then choose “create moderating effect.” Then, select
a predictor and a moderator (in our case, communication
quality and status effects, respectively). This will automatically
produce the interaction variable. A demonstration of this
feature is offered on Gaskination’s YouTube channel:
http:/ /www.youtube.com/watch?v=upEfl1brVvXQ.

30To be conservative, we consider only the change in 22,
shown in the f? statistic, to be equivalent to effect size. This is
because regression changes in 3 are less accurate indicators
of effect size, especially if multicollinearity exists [85]. Since
PLS and regression share similarities in how 3 is calculated,
we also do not consider changes in 3 to be equivalent to
effect size. We calculate 2 as [I?? (interaction model) —
R*(main effects model)]/[1 — R?*(main effects model)].
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R? (seedl). The path coefficients or betas (3s)32 are
indicated numerically (from 0.000 to 1.000) on

the paths between the two constructs, along with
their direction and significance (again, negative
relationships are noted with dotted lines). Numbers
that appear on paths are the path coefficients (5s).
Asterisks indicate significance levels: *p < 0.05,
*p < 0.01, ***p < 0.001. Gaskin [86] provides

a video demonstration on how to conduct an
interaction moderation analysis in SmartPLS.

Step 7. Test for Mediation (If Applicable): In addition
to the moderation check, to establish the full
nomological validity of our model, we performed

a mediation check, a check that, by necessity,
must be done in stages. A mediator is a construct
in a causal chain between two other constructs.
For example, if one were to assert that increasing
system speed caused reduced cognitive load

on users, thereby increasing user productivity,

one would say that cognitive load mediates the
relationship between system speed and user
performance. Full mediation occurs when the IV no
longer has a significant effect on the DV when the
mediator is included in the model; partial mediation
occurs when the IV still has a significant effect but

3lln SEM, variance explained (£2*s) for a particular DV
represents the degree to which the percentage (0%-100%) of
variance in the DV is accounted for by the IV(s) that predicts
it. Thus, a key goal in SEM is to provide as high variances
explained as possible for each DV. The less variance that is
explained, the more that factors outside the model account for
the DV’s decrease of the explanatory power of the model.

32In SEM, a path coefficient is the partial correlation coefficient
between the IV and DV, adjusted for other IVs. In short, it shows
how much of an increase/decrease in the IV affects the DV.
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when its effect is diminished when the mediator is
included in the model [87].

Computer
experience

Model with interactions of status effects using the PI approach.

In our model, communication quality is proposed
as a mediator between interactivity and process
satisfaction. That is, interactivity first increases
communication quality, leading to an increase in
process satisfaction. Interactivity specifically does
not directly increase process satisfaction. Since
we only had one mediator in our path model, we
followed the simple test of mediation proposed by
Baron and Kenny.33:3% Comparing three different
model runs in PLS corresponds to the three models
required by Baron and Kenny’s classic mediation
test and comparing the resulting path coefficients
and R?%s.

First, the unmediated path between interactivity
process satisfaction (still including covariates

and the interaction terms) had a significant / of
0.460 and produced an R? of 0.537 for process
satisfaction. When the mediation relationship with
communication quality was added, the new paths

33“A variable functions as a mediator when it meets the
following conditions: variations in levels of the independent
variable significantly account for variations in the presumed
mediator (such as Path a), variations in the mediator significantly
account for variations in the dependent variable (such as Path b),
and when paths a and b are controlled, a previously significant
relation between the independent and dependent variables is no
longer significant, with the strongest demonstration of mediation
occurring when Path c is zero” ([87, p. 1176]).

34Another method is to perform a bootstrap and then examine
the “total effects (means, STDEV, t-values)” portion of the
bootstrapping section of the default report. The ¢-statistic for the
total effect will represent the “total effect” the predictor has on
the dependent variable through the mediator (if no direct path is
specified between the predictor and DV)—such as the mediated
effect.
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were significant (interactivity to communication
quality had a (# of 0.693 and communication
quality to process satisfaction had a @ of 0.648).
Importantly, the direct path between interactivity
and process satisfaction became nonsignificant
with a 3 of 0.068. Meanwhile, the new R? for process
satisfaction increased to 0.672. These results
validated our model by providing strong evidence
that communication quality acts as a full mediator
and that predicting only a direct relationship
between interactivity and process satisfaction is
suboptimal and theoretically incorrect. An example
of how to perform a mediation test in SmartPLS is
available here [88].

Step 8. Assess the Predictive Power of the Model:
Once the full model had been tested (establishing
or rejecting the nomological validity of the model),
we assessed the predictive power of the model (how
well the model explains variance in the DVs), as
demonstrated by the path coefficients and R?s in
the model (see Fig. 2). Chin [38] indicates that

to demonstrate meaningful predictive power of

a PLS model, one needs to show high R?s and
substantial and significant structural paths. To be
“substantial,” standardized paths need to be close
to 0.20 (and ideally 0.30 or higher) to indicate that
the model has meaningful predictive power (also see
Fig. 2). In our test, the path between the interaction
term and process satisfaction was lower, but again,
even small interaction terms that are significant are
important to a model [45]. Thus, we concluded that
our overall model has excellent predictive power.

Step 9. Provide and Interpret Final Statistics: As the
final step of the analysis of our model, we provide the
measurement model statistics (Table A1.6, available
online as downloadable supplementary material at
http:/ /ieeexplore.ieee.org) and a summary of the
path coefficients and significance levels (Table A1.7,
available online as downloadable supplementary
material at http://ieeexplore.ieee.org).

Other Analyses and Concerns: SEM includes
numerous other analyses. Although many of these
are useful and commonly needed analyses, the
aim of this tutorial is not to provide an exhaustive
text on all possible SEM analyses, but to provide

a simple tutorial for the most common and

most needed analyses for standard SEM studies.
Nevertheless, we offer a few additional guidelines in
this section for the most common of these analyses.

Our illustrative study did not include multigroup
moderation or moderated mediation; however,
these types of relationships are increasingly

included in research studies. The interested reader
may refer to [89] for a video demonstration and
explanation of how to conduct such analyses in
SmartPLS. Mediated moderation is also becoming
more common and can be conducted in the same
way as normal mediated effects—with the only
difference being that the exogenous variable in such
a relationship is the interaction variable, rather
than the regular independent (predictor) variable.

How to include control variables (sometimes called
covariates or alternative hypotheses) is a point

of confusion for many novice scholars. Control
variables should be included for the express
purpose of accounting for known or potential
confounding effects on any construct in the model.
The most common mistake regarding control
variables is that the researcher will only control for
the potential effects on the dependent variables.
However, if a control variable is suspected to also
affect a mediator or even an independent variable,
these effects can be accounted for by drawing a line
in SmartPLS from the control variable to the other
variable. However, the inclusion of these effects
should be theory driven.

IMPLICATIONS

Based on our empirical demonstration and our
explanation of 1G and 2G techniques, we next offer
several recommendations for and implications of
using these techniques for research.

First, before performing data validation (ideally

as part of design), researchers need to properly
specify their models, determine which constructs
are reflective and which are formative, and then
use appropriate validation techniques specific to
reflective and formative indicators. If interaction
terms exist, a summated indicator (SI) approach
should be used only with reflective indicators
(because they are interchangeable) and when there
is little to no measurement error. Meanwhile, the
PI approach should be used with mixed models
and for data that have measurement error. In our
model, we had six reflective constructs and two
formative ones. For our moderation, we utilized the
PI approach because the moderation included a
formative construct (communication quality).

Second, 1G regression techniques can often be
used effectively to analyze path models under the
following conditions: if an entire model is reflective,
if a model is fairly simple (e.g., few paths and
nodes), if the model is complex but measured
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TABLE II
COMPARISON OF ANALYSIS TECHNIQUES FOR SEVERAL MODELING SCENARIOS
Modeling Scenario | First generation | CB-SEM PLS
Estimate the effect Simplest Also works but is overkill Also works but is
of one observed* IV for such simple tests overkill for such simple
on one observed DV tests
Estimate the effect Simplest Also works but is overkill Also works but is
of many observed for such simple tests overkill for such simple
IVs and one tests
observed DV
Repeated measures | Simplest Difficult but possible Not yet designed well
for this
Estimate effects on Also works Works (also provides Also works (but no fit
multiple observed (multivariate model fit statistics) statistics)
DVs general linear
model)
Estimate effects Will not work Works (also provides Also works (but no fit
between latent model fit statistics) statistics)
variables
Estimate indirect Will not work Works through Works through
and total effects bootstrapping bootstrapping
(mediation) through
a chain of effects
Compare multiple Will not work Simplest Not yet designed well
effects across for this
multiple groups
Create simple Works Also works but is overkill Also works but is
observed interaction for such simple tests overkill for such simple
effects to predict tests
single observed DV
Create complex Will not work Difficult but possible Simplest
latent interaction
effects
Model includes Will not work Not designed for this; Simplest
formative latent difficult, but can use MIMIC
variables models
Hierarchical models | Will not work Works well for reflective Works for reflective and
(second- or third- variables; possible for formative variables
order latent formative with MIMIC
variables) models
Inclusion of Works Works; best for medium Works; best for
covariates or control size models and when medium-size and
variables model fit is desired complex models when
model fit not desired
Modeling large, Will not work Typically will not work Will work but must
complex models with because of issues in adhere to sampling size
high number of creating Cartesian requirements or results
latent constructs products; best for medium | will be suspect
to small models

*such as, not latent

with little to no error, if there are large interaction need to be used to deal with highly influential

terms that are reflective and measured with little outliers, heteroscedasticity, and the like. [41].
error (in which case the SI approach should be In fact, Marcoulides et al. [52] point out that
suitable), if polynomial relationships exist [41], when all constructs are considered reflective,
if there are nonlinear relationships [41], or if any comparison between multiple regression and

carefully validated data-transformation techniques 2G techniques is trivial. We did not rely on 1G
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techniques because our model was complex and
included formative constructs.

Third, 2G techniques should be used to analyze
path models under the following conditions: if the
entire model is formative (either CB-SEM or PLS can
theoretically be used, but the analysis for CB-SEM
is challenging and still has some issues [90]), if a
model is mixed between formative and reflective
indicators (in which case PLS should be used), if a
model has small interaction terms measured with
error (using the PI approach), or if a model has
large interaction terms (many indicators) or terms
with substantial error (in which case PLS is most
appropriate). Table II offers our recommendations
of which statistical approach to select given one

of a few common causal-modeling scenarios. Our
model included a very large interaction as well as
some formative constructs; thus, PLS was the most
appropriate analysis approach.

Fourth, to improve analysis with PLS (this is

also applicable to 1G techniques and CB-SEM),
Marcoulides and Saunders [64] suggest focusing
on strong theoretical models, emphasizing data
screening (including tests of normality and missing
data), examining the psychometric properties of
the variables in a model, using carefully measured
variables, examining the “magnitude of the
relationships and effects between the variables
being considered in the proposed model” [64, p.
vii], examining “the magnitude of the standard
errors of the estimates considered in the proposed
model and construct confidence intervals for the
population parameters of interest” [64, p. vii], and
reporting statistical power (for an example of a
power analysis, see [91]). We have illustrated and
described these in the context of our model, either in
the demonstration above or in the online appendix,
available online as downloadable supplementary
material at http://ieeexplore.ieee.org.

Fifth, researchers must also be careful with model
parameterizations (e.g., correlation matrix versus
covariance matrix), as many researchers have
mistakenly claimed a difference in models due

to PLS when, in fact, the difference was due to
the effects produced by the method of model
parameterization [52]. CB-SEM is based on the
covariance matrix, whereas PLS is based on the
variances within blocks of variables. Due to the
complexity of our final model (159 variables), the
covariance matrix would have been unwieldy. This
provided another reason to rely on PLS for our
model.

As a final consideration, it is important to only use
standard SEM tools for linear relationships, as
most current tools for PLS and CB-SEM are limited
by their ability to only probe linear relationships.
To explore curvilinear relationships, special tools
and different interpretation approaches must be
taken. The discussion of curvilinear relationships
and tools to assess them is beyond the scope of
this tutorial. For a good guide to such approaches,
we recommend the work of Ned Kock [92]-[94],
developer of WarpPLS. This tutorial—intended as a
beginner’s guide to SEM issues and to PLS analyses
in particular—also does not address some of the
numerous other more advanced issues related to
SEM, such as, but not limited to, lateral collinearity
(see [95]), heteroscedasticity, multivariate outliers,
model fit, factor rotation, and measurement
invariance. To include all possible analyses in
SEM would require a textbook of space. We have
provided in the main text, and supplemented by
the appendix, what we suggest will be sufficient
instruction simply to analyze a fairly complex
model in PLS.

In closing, it is our contention that researchers who
appropriately apply the concepts outlined in this
tutorial, including the basics of PLS analyses, will
be more competent, effective, and competitive in
their causal research. Incompatible approaches to
statistical analysis can undermine a discipline’s
maturity. When researchers test a theory with
incompatible statistical techniques (or use an
appropriate technique in an incorrect way), they
are more likely to be misled by their findings, even
if their data are solid. This could taint theoretically
sound arguments and advance theoretically
unsound arguments. Over the long term, this
could undermine the reputation of a field and even
undermine general causal inquiry.

Although behavioral and communication
researchers with a solid statistical understanding
will be better able to probe current research
questions, the development of sound theory and
the derivation of sound hypotheses must guide the
drawing of causal inferences from any statistical
technique. By carefully considering the theoretical
implications of their statistical choices, causal
researchers can eliminate cargo cult research in
communication and behavioral literature.
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ONLINE APPENDIX 1: MODEL STATISTICS

*** Note to editors and reviewers: Because of length restrictions, this appendix is NOT
intended for publication in the printed version (unless portions are desired in print); instead, we
intend to make it available via an online Web site supplement.

Table Al.1 provides evidence of the significance of the loading or weight of each item within
each latent variable. All items on the latent variable should have a significant t-statistic in order
to demonstrate adequate convergent validity. As shown below, our data meets this criteria.

Table Al.1 T-statistics for Convergent Validity

Construct (latent variable) Indicator  t-statistic
Two-way communication twol 15.52%**
two2 19.24%***
two3 19.53***
two4 21.67***
two5 14.10%**
two6 19.67***
Synchronicity synl 12.43***
syn2 34.86***
syn3 30.50***
syn4 44.17***
syn5 8.61***
Control ctll 25.45%**
ctl2 40.07***
ctl3 7.09%**
ctl4 7.54%**
Discussion efficiency effl 34.12%**
eff2 81.78***
eff3 78.05***
Communication Openness opl 41.19%**
op2 46.15***
op3 49,78***
op4 55.03***
op5 33.74%**
Status effects statl 4.67%**
stat2 5.91%**
stat3 6.01%**
stat4 7.03%**

*p < 0.05, ** p < 0.01, ***p < 0.001



Table A1.2 is a matrix of loadings and cross-loadings for all reflective items in the model. The
loadings of the items in this table should be greater for the latent variable to which they
theoretically belong than for any other latent variable. Discriminant validity is adequate if the
cross-loadings (with other latent variables) are more than the absolute value of 0.100 distant
from the loading on the primary latent variable [1]. For example, in Table Al.2, the ctll item
loads with a value of 0.823 onto the Control latent variable, but loads onto the other variable
with values no greater than 0.500. The strong loading on Control indicates that ctl1 is more
strongly correlated with ctl2-4 than it is with the other items in the table. Item syn5 is removed
because it is also loads fairly strongly on Two-way and loads only slightly more strongly on
Synchronicity. It is beyond the minimum 0.100 threshold; however, removing it in this case will
actually improve discriminant validity since its low loading on Synchronicity is also bringing
down the average loading for that latent variable.

Table Al1.2 Loadings of the Measurement Items

Control Two-way  Synchronicity Openness Efficiency  Status

ctll 10.823 0.492 0.411 0.282 0.203 -0.102
ctl2 | 0.826 0.441 0.419 0.203 0.194 -0.072
ctl3 | 0.567 0.318 0.279 0.221 0.211 -0.113
ctl4 | 0.590 0.320 0.256 0.064 0.109 -0.042
twol 0.498 0.715 0.400 0.234 0.240 -0.201
two2  0.457 0.751 0.523 0.260 0.318 -0.178
two3 0.328 0.722 0.473 0.225 0.298 -0.172
two4 0.448 0.769 0.542 0.255 0.327 -0.186
twoS 0.326 0.672 0.354 0.134 0.241 -0.214
two6 0.377 0.727 0.449 0.314 0.277 -0.170
synl 0.333 0.443 0.674 0.278 0.299 -0.122
syn2  0.407 0.481 0.833 0.285 0.380 -0.140
syn3  0.413 0.526 0.817 0.278 0.437 -0.153
syn4  0.409 0.528 0.846 0.248 0.364 -0.139
syn5  0.274 0.409 *0.583 0.235 0.257 -0.039
opl 0.295 0.377 0.338 0.871 0.577 0.230
op2  0.317 0.377 0.378 0.883 0.598 0.182
op3  0.193 0.214 0.267 0.885 0.522 0.193
opd  0.237 0.244 0.297 0.900 0.572 0.241
op5 0.173 0.228 0.243 0.845 0.535 0.231
effl  0.220 0.324 0.385 0.572 0.864 0.156
eff2  0.245 0.387 0.420 0.596 0.935 0.153
eff3  0.222 0.356 0.460 0.578 0.930 0.163
statl -0.076 -0.213 -0.135 0.209 0.119 0.904
statz  -0.088 -0.221 -0.173 0.244 0.143 0.912
stat3  -0.151 -0.245 -0.162 0.223 0.163 0.916
stat4  -0.096 -0.251 -0.101 0.204 0.217 0.851

* Item removed to improve discriminant validity



Discriminant validity is also demonstrated by comparing the square root of the average variance
extracted to the correlations with other latent variables[2]. If the diagonal values are greater than
any other correlation, then this establishes adequate discriminant validity. If this threshold is not
met (i.e., a correlation is stronger than the diagonal value) then the AVE is lower than the shared
variances with other latent variables. This means that the model will need to be reevaluated to
determine if items with either low loadings or high cross-loadings (such as syn5 in Table Al.2)
can be dropped in order to increase the AVE or decrease the shared variance with another latent
variable.

Table A1.3. Discriminant Validity through the Square Root of AVE (on diagonal)

@) @ (©) (4) (©) (6)
Control (1) (0.712)
Two-way comm (2) 0.547 (0.727)
Synchronicity (3) 0.469 0.605 (0.809)
Comm Open (4) 0.271 0.324 0.337 (0.877)
Discuss eff (5) 0.255 0.391 0.455 0.640 (0.910)

Status effects (6) -0.117 -0.260 -0.168 0.245 0.179 (0.896




Table Al.4 provides the composite reliability of each reflective latent variable. Reliability is a
measure of internal consistency required in reflective (internally correlated) latent variables. No
such expectation is placed upon formative latent variables. To establish reliability, the composite
reliability measures should be greater than 0.700 [3].

Table Al1.4 Composite Reliability

Construct Composite reliability
(latent variable)

Control 0.800

Two-way communication 0.870

Synchronicity 0.883
Communication Openness  0.943

Discussion efficiency 0.828

Status effects 0.942




Table A1.5 MTMM Analysis Table

V1 V2 V3 V4 V5 V6 V7 V8 TKD | V9 V10 | V11 |Vi2 |Vi3
V1
V2 0.725
V3 0.620 | 0.615
V4 -0.503 | -0.538 | -0.715
V5 0.337 | 0.298 | 0.471 | -0.363
V6 0.284 | 0.287 | 0.429 | -0.344 | 0.345
V7 0.267 | 0.263 | 0.427 | -0.404 | 0.224 | 0.352
V8 0.211 | 0.136 | 0.293 | -0.247 | 0.509 | 0.268 | 0.299
TKD | 0.644 | 0.590 | 0.758 | -0.590 | 0.765 | 0.508 | 0.510 | 0.751
V9 0.306 | 0.257 | 0.437 | -0.352 | 0.564 | 0.320 | 0.264 | 0.633 | 0.674
V10 | 0.496 | 0.498 | 0.660 | -0.511 | 0.480 | 0.377 | 0.439 | 0.369 | 0.676 | 0.499
V11 | 0.476 | 0.445 | 0.644 | -0.513 | 0.449 | 0.416 | 0.433 | 0.368 | 0.654 | 0.472 | 0.762
Vvi2z | 0.208 | 0.177 | 0.318 | -0.277 | 0.419 | 0.200 | 0.274 | 0.437 | 0.486 | 0.518 | 0.469 | 0.425
V13 |0.324 | 0.250 | 0.448 | -0.321 | 0.564 | 0.320 | 0.288 | 0.549 | 0.647 | 0.667 | 0.487 | 0.524 | 0.630
SATP | 0.457 | 0.409 | 0.629 | -0.487 | 0.638 | 0.413 | 0.411 | 0.612 | 0.800 | 0.843 | 0.803 | 0.752 | 0.684 | 0.853




Table A1.6 offers the descriptive statistics (means and standard deviations) for, and correlations
among, all first order latent variables in the model.

Table A1.6 Measurement Model Statistics (n = 346)

Construct V] SD (1) (2) 3) 4 (5) (6) @)
Control (1) 497 1.14

Two-way communication (2) 513 1.20 0.547

Synchronicity (3) 512 122 0469 0.605

Task discussion effectiveness (4) 4.97 1.18 0.338 0.508 0.402

Communication openness (5) 450 172 0271 0324 0337 0418

Discussion efficiency (6) 478 174 0255 0391 0455 0.486 0.640

Status effects (7) 221 159 -0.117 -0.260 -0.168 -0.065 0.245 0.179

PS (8) 518 134 0364 0490 0429 0.733 0.519 0.582 -0.062




Table A1.7 offers an evaluation of the structural model, including path coefficients (regression
weights) and t-values. Strong and significant paths in the expected direction indicate support for
that hypothesized path.

Table A1.7 Summary of Path Coefficients and Significance Levels

Hypotheses and corresponding paths Expected Path t-value
sign coefficient  (df = 345)
Interactivity - communication quality (CQ) + 0.697 13.63***

+

0699  15.29%**
(-0.180)  2.85%*
0495  44.18%**

Communication quality = process satisfaction (PS)

Status effects negatively moderates the relationship between CQ and PS
Two-way communication is a first-order factor of interactivity
Synchronicity is a first-order factor of interactivity 0.367 34.90%**
Control is a first-order factor of interactivity 0.321 28.38***

Communication openness is a first-order factor of CQ 0.465 29.65***
Task discussion effectiveness is a first-order factor of CQ 0.421 49.30***

+
+
+
Discussion efficiency is a first-order factor of CQ + 0.289 26.50***
+
+
<

* indicates significant paths: *p < 0.05, ** p < 0.01, ***p < 0.001



ONLINE APPENDIX 2: SUPPLEMENTAL PLS ANALYSES

In this appendix, we offer two additional illustrative PLS analyses that were not relevant to our
theoretical model in the main text but can be readily in other contexts. To reduce complexity and
to offer a more parsimonious illustration of these two additional analyses, we simplify the model
for this appendix. The model we will be testing across groups as well as for moderated mediation
includes only three latent constructs: Communication Openness, Discussion Efficiency, and
Process Satisfaction as shown in the figure below. The categorical moderator used in these
examples is an artificial gender variable created solely for illustrative purposes. Thus, no
theoretical claims should be made based on these results, which arefor illustration only.

DiscEffic

Comm O... ProcSat

BETWEEN GROUP COMPARISONS

Moderating by group membership (such as gender, religion, nationality, and so forth.) is a
common modeling need. However, existing tools for conducting PLS analyses are not well-
designed for such tests. We therefore offer here an illustrative example of how to conduct this
kind of analysis. A video demonstration of multi-group moderation, as well as moderated
mediation in SmartPLS, is available here at Gaskination [4].

1. Split the data into two datasets based on the values of the moderator. In this example, we
are using gender as the moderating variable. Therefore, we create two datasets: one for
male (n=188) and one for female (n=155).

2. Load both datasets into SmartPLS and then run a bootstrap analysis on each dataset using
the same model. To switch between datasets, right-click the dataset and select “Use Data
for Calculation”. Open the default report after running the bootstrap for each gender.

3. Using the formula (shown below) provided on Wynne Chin’s PLS FAQ website
(http://disc-nt.cba.uh.edu/chin/plsfag.htm), calculate the t-statistic for the difference
between the effects. The formula requires the sample size of each group, as well as the
regression weights and the standard errors for the path being tested. This fairly complex
formula has been converted into an Excel function by James Gaskin (available here:
http://www.kolobkreations.com/Stats%20Tools%20Package.xlsm) that also converts the
t-statistic into a two-tailed probability value.
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The results of testing our simple model (using 500 resamples) are shown in the table below. The
results indicate that the effect of communication openness on discussion efficiency is
significantly stronger for males. The effect between communication openness and process
satisfaction is also significantly stronger for males. However, the effect between discussion
efficiency and process satisfaction is significantly stronger for females.

Comm Open - Disc Effic | Comm Open - Proc Sat | Disc Effic 2 Proc Sat

Female Male Female Male Female Male

Sample Size 158 188 158 188 158 188

Regression Weight 0.3167 0.5865 0.1576 0.3400 0.4603 0.2410

Standard Error (S.E.) 0.0421 0.0541 0.0436 0.0580 0.0404 0.0672
t-statistic 3.8367 2.4440 2.6773
p-value (2-tailed) 0.0001 0.0150 0.0078

MODERATED MEDIATION

Extending the above analysis to test for moderated mediation is fairly simple. We can actually
use the same approach, but instead of looking at the regression weight and standard error for the
direct effect, we will use the ones for the total effect. In this analysis, we will test whether the
effect of communication openness on process satisfaction, mediated by discussion efficiency, is
moderated by gender such that the total effect of communication openness on process
satisfaction is significantly different for males and females. Using the same steps as above (split
data, bootstrap, open default report), we then input the regression weight and standard error for
the total effects into Chin’s formula. The result for our model is shown below. The results
indicate that the mediated effect is stronger for males than for females, and this difference is
significant at p<0.05.

Comm Open - Disc Effic = Proc Sat

Female Male

Sample Size 158 188

Regression Weight 0.3020 0.4824

Standard Error (S.E.) 0.0409 0.0684
t-statistic 2.166
p-value (2-tailed) 0.031




APPENDIX 3. MEASURES

Table Al: Measures Used in this Research

Latent variable
(type)

Items

Measure notes

Interactivity

(second-order)

Subconstruct: control (reflective):

Ctnl1: | felt that | had a great deal of control over my
communication in this group.

Ctnl2: While | was involved in this group, | could choose freely
what | wanted to hear/read and say/contribute.

* Ctnl3: While involved in this group, | had absolutely no control
over my communication.

Ctnl4: While involved in this group, my actions determined the
kind of experiences | had.

Subconstruct: two-way communication (reflective):

Twol: The facilitator effectively gathered group members’
feedback.

Two2: The group environment facilitated two-way communication
between group members and the facilitator.

* Two3: It was difficult to offer feedback to the facilitator.

Two4: The facilitator made me feel he/she wanted to listen to the
group members.

* Two5: The facilitator did not at all encourage group members to
communicate.

Two6: The group environment gave group members the
opportunity to communicate.

Subconstruct: synchronicity (reflective):

Synchl: The facilitator processed my input very quickly.

Synch 2: Getting information from the facilitator was very fast.
Synch 3: In the group environment | was able to obtain the
information | wanted without any delay.

Synch4: When | communicated with the facilitator, | felt | received
instantaneous information.

This version directly from [5]; they adapted
original measures from [6] to make them
consistently in past tense and more general to a
group interaction (not a Web site interaction).

Discussion
efficiency

Eff1: To what extent would you agree that this group interaction
was result oriented?

This version directly from [5]; original from [7].
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(reflective)

Eff2: The time spent in the group interaction was efficiently used.
Eff3: Issues raised in the group interaction were discussed
thoroughly.

Task discussion
effectiveness

(formative)

*Taskdl. The discussions, were ineffective

*Taskd2. The context of the discussions was carelessly developed
Taskd3. Issues were examined effectively

*Taskd4. Participation in the discussions was unevenly distributed
*Taskd>5. Ideas in the discussions were uncritically examined
Taskd6. The amount of information exchanged was sufficient

This version directly from [5]. Instrument
application: use as is to measure communication
task discussion effectiveness on the group level
for the posttest. Original from [8]; used all
original items except 1 and 3 as these overlap
with discussion quality. Changed original
anchors to the degree of agreement on 7-point
Likert-like scale.

Process
satisfaction

(formative)

Satpl: Our group discussion process was efficient.

* Satp2: Our group discussion process was uncoordinated.
* Satp3: Our group discussion process was unfair.

Satp4: Our group discussion process was understandable.
Satp5: Our group discussion process was satisfying.

This version directly from [5]; original from [9].
Re-anchored on a seven-point scale from five-
point scale. Original anchors were inefficient /
efficient, uncoordinated / coordinated, unfair /
fair, confusing / understandable, dissatisfying /
satisfying; changed to only using first part of
anchor with respondent indicating how strongly
they agreed or disagreed (made items 1, 4, 5
positive). For classroom use “decision-making”
was termed as “discussion process.”

Openness

(reflective)

Openl: It was easy to communicate openly to all members of this
group.

Open2: Communication in this group was very open.

Open3: When people communicated to each other in this group,
there was a great deal of understanding.

Open4: It was easy to ask advice from any member of this group.
*Open5: We needed to adapt our style of communication to
effectively communicate.

This version directly from [5]; adapted from
[10]; changed to past tense.

Status Effects

(reflective)

Statl: Some group members tried to intimidate others, e.g. by
talking loudly, using aggressive gestures, making threats, etc.
Stat2: Some group members tried to use their influence, status, or
power so as to force issues on the other group members.

Stat3: | felt inhibited from participating in the interaction because
of the behavior of other group members.

Stat4: | experienced pressure, either to conform to a particular
viewpoint or to not contradict others.

This version directly from [5]; original from [7].
Expended from a five-point scale to a point-
point scale (strongly agree to strongly disagree).

* reverse coded

All items use a 1-to-7-point Likert-type scale anchored on “strongly disagree . . .strongly agree.”
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